题目内容
对于数列{xn}满足x1=a(a>2),xn+1=
(n=1,2,…).
(1)求证:2<xn+1<xn(n=1,2,3,…);
(2)若a≤3,{xn}前n项和为Sn,求证:Sn<2n+
(n=1,2,…)
| ||
| 2(xn-1) |
(1)求证:2<xn+1<xn(n=1,2,3,…);
(2)若a≤3,{xn}前n项和为Sn,求证:Sn<2n+
| a |
| 2 |
分析:(1)利用数学归纳法证明,验证n=1命题成立,然后假设n=k时命题成立,然后证明n=k+1时命题也成立.
(2)利用xn+1=
,推出xn+1-2≤
(xn-2),如果求和,得到sn-2n<
(a-2),然后证明结果.
(2)利用xn+1=
| ||
| 2(xn-1) |
| 1 |
| 4 |
| 4 |
| 3 |
解答:证明:(1)(数学归纳法)先证:xn>2.
∵当n=1时,x1=a>2成立
假设n=k时,xk>2.
则:xk+1=
=
•
=
[(xk-1)+
+2]>
×4=2
∴xn>2
又:xn+1-xn=
-xn=
<0
∴xn>xn+1,
就是说n=k+1时2<xn+1<xn(n=1,2,3,…)也成立.
综上知:2<xn+1<xn
(2)xn+1-2=
-2=
=
•(xn-2)
∵2<xn≤x1≤3
∴
=
[1-
]≤
•(1-
)=
∴xn+1-2≤
(xn-2)
∴xn-2≤(
)n-1•(x1-2)=(
)n-1•(a-2)
∴sn-2n=
(xi-2)≤
(
)i-1•(a-2)<(a-2)•
=
(a-2)
∵
(a-2)-
=
<0
∴
(a-2)<
∴sn-2n<
即sn<2n+
∵当n=1时,x1=a>2成立
假设n=k时,xk>2.
则:xk+1=
| ||
| 2(kx-1) |
| 1 |
| 2 |
| [(xk-1)+1]2 |
| xk-1 |
| 1 |
| 2 |
| 1 |
| xk-1 |
| 1 |
| 2 |
∴xn>2
又:xn+1-xn=
| ||
| 2(xn-1) |
| xn(2-xn) |
| 2(xn-1) |
∴xn>xn+1,
就是说n=k+1时2<xn+1<xn(n=1,2,3,…)也成立.
综上知:2<xn+1<xn
(2)xn+1-2=
| ||
| 2(xn-1) |
| (xn-2)2 |
| 2(xn-1) |
| xn-2 |
| 2(xn-1) |
∵2<xn≤x1≤3
∴
| xn-2 |
| 2(xn-1) |
| 1 |
| 2 |
| 1 |
| xn-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
∴xn+1-2≤
| 1 |
| 4 |
∴xn-2≤(
| 1 |
| 4 |
| 1 |
| 4 |
∴sn-2n=
| n |
| i=1 |
| n |
| i=1 |
| 1 |
| 4 |
| 1 | ||
1-
|
| 4 |
| 3 |
∵
| 4 |
| 3 |
| a |
| 2 |
| 5a-16 |
| 6 |
∴
| 4 |
| 3 |
| a |
| 2 |
∴sn-2n<
| a |
| 2 |
即sn<2n+
| a |
| 2 |
点评:本题考查数列与不等式的综合,数学归纳法的应用,放缩法的应用,考查转化思想,计算能力.
练习册系列答案
相关题目