题目内容

在△ABC中,三个内角A,B,C所对的边分别是a,b,c,已知c=2,C=,△ABC的面积等于,则a+b=   
【答案】分析:由三角形的面积公式表示出三角形ABC的面积,将sinC的值代入求出ab的值,再由余弦定理列出关系式,利用完全平方公式变形后,将ab的值代入即可求出a+b的值.
解答:解:∵S△ABC=absinC=ab=
∴ab=4,
由余弦定理c2=a2+b2-2abcosC=a2+b2-ab=(a+b)2-3ab,即4=(a+b)2-12,
则a+b=4.
故答案为:4
点评:此题考查了余弦定理,三角形的面积公式,以及完全平方公式的运用,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网