题目内容
已知A,B,C是△ABC三内角,向量
=(-1,
),
=(cosA,sinA),且
•
=1.
(1)求角A;
(2)若
=-3,求tanB.
| m |
| 3 |
| n |
| m |
| n |
(1)求角A;
(2)若
| 1+sin2B |
| cos2B-sin2B |
(1)∵
(-1,
),
(cosA,sinA),且
•
=1,
∴
sinA-cosA=2(
sinA-
cosA)=2sin(A-
)=1,
∴sin(A-
)=
,
∵0<A<π,∴-
<A-
<
,
∴A-
=
,
∴A=
;
(2)由题知
=-3,且sin2B+cos2B=1,
整理得:sin2B-sinBcosB-2cos2B=0,
∴cosB≠0,即cos2B≠0,
∴等式左右两边除以cos2B得:tan2B-tanB-2=0,
∴tanB=2或tanB=-1,
而tanB=-1使cos2B-sin2B=0,舍去,
∴tanB=2.
| m |
| 3 |
| n |
| m |
| n |
∴
| 3 |
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
∴sin(A-
| π |
| 6 |
| 1 |
| 2 |
∵0<A<π,∴-
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴A-
| π |
| 6 |
| π |
| 6 |
∴A=
| π |
| 3 |
(2)由题知
| 1+2sinBcosB |
| cos2B-sin2B |
整理得:sin2B-sinBcosB-2cos2B=0,
∴cosB≠0,即cos2B≠0,
∴等式左右两边除以cos2B得:tan2B-tanB-2=0,
∴tanB=2或tanB=-1,
而tanB=-1使cos2B-sin2B=0,舍去,
∴tanB=2.
练习册系列答案
相关题目