ÌâÄ¿ÄÚÈÝ
¸ù¾ÝÈçͼËùʾµÄ³ÌÐò¿òͼ£¬½«Êä³öa£¬bµÄÖµÒÀ´Î·Ö±ð¼ÇΪa1£¬a2£¬¡£¬an£¬¡£¬a2008£»b1£¬b2£¬¡£¬bn£¬¡£¬b2008£®
£¨¢ñ£©ÇóÊýÁÐ { an} µÄͨÏʽ£»
£¨¢ò£©Ð´³öb1£¬b2£¬b3£¬b4£¬Óɴ˲ÂÏë{ bn}µÄͨÏʽ£¬²¢Ö¤Ã÷ÄãµÄÖ¤Ã÷£»
£¨¢ó£©ÔÚ akÓë ak+1ÖвåÈëbk+1¸ö3µÃµ½Ò»¸öÐÂÊýÁÐ { cn }£¬ÉèÊýÁÐ { cn }µÄǰnÏîºÍΪSn£¬ÎÊÊÇ·ñ´æÔÚÕâÑùµÄÕýÕûÊým£¬Ê¹ÊýÁÐ{ cn }µÄǰmÏîµÄºÍSm=2008£¬Èç¹û´æÔÚ£¬Çó³ömµÄÖµ£¬Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£®
£¨¢ñ£©ÇóÊýÁÐ { an} µÄͨÏʽ£»
£¨¢ò£©Ð´³öb1£¬b2£¬b3£¬b4£¬Óɴ˲ÂÏë{ bn}µÄͨÏʽ£¬²¢Ö¤Ã÷ÄãµÄÖ¤Ã÷£»
£¨¢ó£©ÔÚ akÓë ak+1ÖвåÈëbk+1¸ö3µÃµ½Ò»¸öÐÂÊýÁÐ { cn }£¬ÉèÊýÁÐ { cn }µÄǰnÏîºÍΪSn£¬ÎÊÊÇ·ñ´æÔÚÕâÑùµÄÕýÕûÊým£¬Ê¹ÊýÁÐ{ cn }µÄǰmÏîµÄºÍSm=2008£¬Èç¹û´æÔÚ£¬Çó³ömµÄÖµ£¬Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£®
£¨¢ñ£©a1=1£¬an+1=an+1£¬¡à{ an}Êǹ«²îΪ1µÄµÈ²îÊýÁУ®¡àan=n£®
£¨¢ò£©b1=0£¬b2=2£¬b3=8£¬b4=26£¬
²ÂÏëbn=3n-1-1£®Ö¤Ã÷ÈçÏ£ºbn+1=3bn+2£¬bn+1+1=3£¨bn+1£©£¬
¡à{ bn+1}Êǹ«±ÈΪ3µÄµÈ±ÈÊýÁУ®¡àbn+1=£¨b1+1£©3n-1=3n-1£®Ôòbn=3n-1-1£®
£¨¢ó£©ÊýÁÐ{cn}ÖУ¬akÏº¬ak£©Ç°µÄËùÓÐÏîµÄºÍÊÇ£¨1+2+¡+k£©+£¨31+32+¡+3k-1£©=
+
£¬
¹ÀËãÖª£¬µ±k=7ʱ£¬ÆäºÍÊÇ28+
=1120£¼2008£¬µ±k=8ʱ£¬ÆäºÍÊÇ36+
=3315£¾2008£¬ÓÖÒòΪ2008-1120=888=296¡Á3£¬ÊÇ3µÄ±¶Êý£¬
¹Ê´æÔÚÕâÑùµÄm£¬Ê¹µÃSm=2008£¬´Ëʱm=7+£¨1+3+32+¡+35£©+296=667£®
£¨¢ò£©b1=0£¬b2=2£¬b3=8£¬b4=26£¬
²ÂÏëbn=3n-1-1£®Ö¤Ã÷ÈçÏ£ºbn+1=3bn+2£¬bn+1+1=3£¨bn+1£©£¬
¡à{ bn+1}Êǹ«±ÈΪ3µÄµÈ±ÈÊýÁУ®¡àbn+1=£¨b1+1£©3n-1=3n-1£®Ôòbn=3n-1-1£®
£¨¢ó£©ÊýÁÐ{cn}ÖУ¬akÏº¬ak£©Ç°µÄËùÓÐÏîµÄºÍÊÇ£¨1+2+¡+k£©+£¨31+32+¡+3k-1£©=
| k(k+1) |
| 2 |
| 3k-3 |
| 2 |
¹ÀËãÖª£¬µ±k=7ʱ£¬ÆäºÍÊÇ28+
| 37-3 |
| 2 |
| 38-3 |
| 2 |
¹Ê´æÔÚÕâÑùµÄm£¬Ê¹µÃSm=2008£¬´Ëʱm=7+£¨1+3+32+¡+35£©+296=667£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿