题目内容
数列{an}的通项公式an=n(n+1),Sn为数列{
}的前n项和,则Sn=
.
| 1 |
| an |
| n |
| n+1 |
| n |
| n+1 |
分析:由已知可得:
=
=
-
,利用“裂项求和”即可得出.
| 1 |
| an |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵
=
=
-
,
∴Sn=(1-
)+(
-
)+…+(
-
)
=1-
=
.
故答案为
.
| 1 |
| an |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
故答案为
| n |
| n+1 |
点评:熟练掌握“裂项求和”是解题的关键.
练习册系列答案
相关题目