题目内容

F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点,P是椭圆上任意一点,从任一焦点引∠F1PF2的外角平分线的垂线,垂足为Q,则点Q的轨迹为(  )
A、圆B、椭圆C、双曲线D、抛物线
分析:延长F2P,与F1Q的延长线交于M点,连接QO,根据等腰三角形“三线合一”和三角形中位线定理,结合椭圆的定义证出OQ的长恰好等于椭圆的长半轴a,得动点Q的轨迹方程为x2+y2=a2,由此可得本题答案.
解答:精英家教网解:由题意,延长F2P,与F1Q的延长线交于M点,连接QO,
∵MP是∠F1MB的平分线,且PQ⊥MF1
∴△F1MP中,|PF1|=|PM|且Q为MF1的中点
由三角形中位线定理,得|OQ|=
1
2
|MF2|=
1
2
(|MP|+|PF2|)
∵由椭圆的定义,得|PF1|+|PF2|=2a,(2a是椭圆的长轴)
可得|MP|+|PF2|=2a,
∴|OQ|=
1
2
(|MP|+|PF2|)=a,可得动点Q的轨迹方程为x2+y2=a2
∴点Q的轨迹为以原点为圆心半径为a的圆.
故选A.
点评:本题在椭圆中求动点P的轨迹,着重考查了椭圆的定义、等腰三角形的判定和三角形中位线定理等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网