题目内容
22.![]()
如图,△OBC的三个顶点坐标分别为(0,0)、(1,0)、(0,2),设P1为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn),an=
yn+yn+1+yn+2.
(Ⅰ)求a1,a2,a3及an;
(Ⅱ)证明:yn+4=1-
,n∈N*;
(Ⅲ)若记bn=y4n+4-y4n,n∈N*,证明:{bn}是等比数列.
22.本题主要考查数列的递推关系、等比数列等基础知识,考查知识的综合运用和解决问题的创新能力.
![]()
解:(Ⅰ)因为y1=y2=y4=1,y3=
,y5=
,
所以a1=a2=a3=2.
又由题意可知yn+3=
.
∴an+1=
yn+1+yn+2+yn+3
=
yn+1+yn+2+![]()
=
yn+yn+1+yn+2=an,
∴{an}为常数列.
∴an=a1=2,n∈N*.
(Ⅱ)将等式
yn+yn+1+yn+2=2两边除以2,得
yn+
=1,
又∵yn+4=
,
∴yn+4=1-
.
(Ⅲ)∵bn+1=y4n+8-y4n+4=(1-
)-(1-
)
=-
(y4n+4-y4n)
=-
bn,
又∵b1=y8-y4=-
≠0,
∴{bn}是公比为-
的等比数列.
练习册系列答案
相关题目