题目内容
已知数列{an}满足a1=2,an+1=2(1+
)2•an.
(1)求证数列{
}是等比数列,并求其通项公式;
(2)设b n=
,求数列{bn}的前n项和Sn;
(3)设Cn=
,求证:c1+c2+c3+…+cn<
.
| 1 |
| n |
(1)求证数列{
| an |
| n2 |
(2)设b n=
| an |
| n |
(3)设Cn=
| n |
| an |
| 7 |
| 10 |
分析:(1)利用an+1=2(1+
)2•an,可得
=2•
,从而可得{
}是以2为首项,2为公比的等比数列,即可并求其通项公式;
(2)利用错位相减法,可求数列{bn}的前n项和Sn;
(3)利用放缩法,结合等比数列的求和公式,即可证得结论.
| 1 |
| n |
| an+1 |
| (n+1)2 |
| an |
| n2 |
| an |
| n2 |
(2)利用错位相减法,可求数列{bn}的前n项和Sn;
(3)利用放缩法,结合等比数列的求和公式,即可证得结论.
解答:(1)解:∵an+1=2(1+
)2•an,
∴
=2•
∵a1=2,∴{
}是以2为首项,2为公比的等比数列
∴
=2n
∴an=n2•2n;
(2)解: bn=
=n•2n
∴Sn=1•21+2•22+…+n•2n
∴2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1
两式相减可得-Sn=2n+1-2-n•2n+1
∴Sn=2+(n-1)•2n+1;
(3)证明:cn=
=
>0,
设Tn=c1+c2+c3+…+cn,则T1<T2<T3<T4,
当n≥4时,Tn=
+
+…+
<
+
+
(
+…+
)=
+
•
-
•(
)n<
+
•
<
+
=
综上:c1+c2+c3+…+cn<
| 1 |
| n |
∴
| an+1 |
| (n+1)2 |
| an |
| n2 |
∵a1=2,∴{
| an |
| n2 |
∴
| an |
| n2 |
∴an=n2•2n;
(2)解: bn=
| an |
| n |
∴Sn=1•21+2•22+…+n•2n
∴2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1
两式相减可得-Sn=2n+1-2-n•2n+1
∴Sn=2+(n-1)•2n+1;
(3)证明:cn=
| n |
| an |
| 1 |
| n•2n |
设Tn=c1+c2+c3+…+cn,则T1<T2<T3<T4,
当n≥4时,Tn=
| 1 |
| 1•2 |
| 1 |
| 2•22 |
| 1 |
| n•2n |
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 4 |
| 1 |
| 24 |
| 1 |
| 2n |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 23 |
| 1 |
| 4 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 23 |
| 2 |
| 3 |
| 1 |
| 30 |
| 7 |
| 10 |
综上:c1+c2+c3+…+cn<
| 7 |
| 10 |
点评:本题考查等比数列的证明,考查数列的通项与求和,考查不等式的证明,属于中档题.
练习册系列答案
相关题目