题目内容
已知函数f(x)是定义在R上的最小正周期为3的奇函数,当x∈(-
,0),f(x)=log2(1-x),则f(2011)+f(2012)+f(2013)+f(2014)=( )
| 3 |
| 2 |
| A.0 | B.1 | C.-1 | D.2 |
∵函数f(x)是定义在R上的最小正周期为3,
∴f(2011)+f(2012)+f(2013)+f(2014)
=f(670×3+1)+f(671×3-1)+f(671×3)+f(671×3+1)
=2f(1)+f(-1)+f(0),
又已知函数f(x)是定义在R上奇函数,∴f(0)=0,f(-1)=-f(1),
又∵当x∈(-
,0),f(x)=log2(1-x),
∴f(-1)=log2[1-(-1)]=log22=1,∴f(1)=-1,
∴f(2011)+f(2012)+f(2013)+f(2014)
=2×(-1)+1+0=-1.
故选C.
∴f(2011)+f(2012)+f(2013)+f(2014)
=f(670×3+1)+f(671×3-1)+f(671×3)+f(671×3+1)
=2f(1)+f(-1)+f(0),
又已知函数f(x)是定义在R上奇函数,∴f(0)=0,f(-1)=-f(1),
又∵当x∈(-
| 3 |
| 2 |
∴f(-1)=log2[1-(-1)]=log22=1,∴f(1)=-1,
∴f(2011)+f(2012)+f(2013)+f(2014)
=2×(-1)+1+0=-1.
故选C.
练习册系列答案
相关题目