题目内容

1.已知函数fn(x)=$\frac{{n{x^2}-ax}}{{{x^2}+1}}({n∈{N^*}})$的图象在点(0,fn(0))处的切线方程为y=-x
(Ⅰ)求a的值及f1(x)的单调区间
(Ⅱ)是否存在实数k,使得射线y=kx(x≥-3)与曲线y=f1(x)有三个公共点?若存在,求出k的取值范围;若不存在,说明理由
(Ⅲ)设x1,x2,…xn,为正实数,且x1,x2,…xn=1,证明:fn(x1)+fn(x2)+…+fn(xn)≥0.

分析 (Ⅰ)求出fn(x)的导数,求得切线的斜率,由切线方程可得a=1,求出f1(x)的导数,令导数大于0,可得增区间,令导数小于0,可得减区间;
(Ⅱ)由y=$\frac{{x}^{2}-x}{{x}^{2}+1}$和y=kx,可得$\frac{{x}^{2}-x}{{x}^{2}+1}$=kx,解得x=0或$\frac{x-1}{{x}^{2}+1}$=k,要使射线y=kx(x≥-3)与曲线y=f1(x)有三个公共点,只要$\frac{x-1}{{x}^{2}+1}$=k,即kx2-x+k+1=0有两个大于等于-3且不为0的不等实根.对k讨论,k=0和k不为0,结合二次函数的图象,列出不等式组,解得即可;
(Ⅲ)求出y=fn(x)在($\frac{1}{n}$,fn($\frac{1}{n}$))处的切线的方程,当0<x<1时,fn(x)≥$\frac{{n}^{2}}{{n}^{2}+1}$(x-$\frac{1}{n}$),运用累加法,即可得证.

解答 解:(Ⅰ)fn(x)=$\frac{{n{x^2}-ax}}{{{x^2}+1}}({n∈{N^*}})$的导数为f′n(x)=$\frac{a{x}^{2}+2nx-a}{({x}^{2}+1)^{2}}$,
即有在点(0,fn(0))处的切线斜率为f′n(0)=-a=-1,
解得a=1,
f1(x)=$\frac{{x}^{2}-x}{{x}^{2}+1}$,f′1(x)=$\frac{{x}^{2}+2x-1}{({x}^{2}+1)^{2}}$,
f′1(x)>0,解得x>$\sqrt{2}$-1或x<-1-$\sqrt{2}$;
f′1(x)<0,解得-1-$\sqrt{2}$<x<$\sqrt{2}$-1.
即有f1(x)的单调增区间为(-∞,-$\sqrt{2}$-1)∪($\sqrt{2}$-1,+∞),
单调减区间为(-1-$\sqrt{2}$,$\sqrt{2}$-1);
(Ⅱ)由y=$\frac{{x}^{2}-x}{{x}^{2}+1}$和y=kx,可得$\frac{{x}^{2}-x}{{x}^{2}+1}$=kx,解得x=0或$\frac{x-1}{{x}^{2}+1}$=k,
要使射线y=kx(x≥-3)与曲线y=f1(x)有三个公共点,
只要$\frac{x-1}{{x}^{2}+1}$=k,即kx2-x+k+1=0有两个大于等于-3且不为0的不等实根.
当k=0时,方程即为x=1,不合题意舍去;
当k≠0时,令g(x)=kx2-x+k+1,
由$\left\{\begin{array}{l}{kg(-3)>0}\\{g(0)≠0}\\{△>0}\\{\frac{1}{2k}>-3}\end{array}\right.$即$\left\{\begin{array}{l}{k(10k+4)>0}\\{k+1≠0}\\{1-4k(1+k)}\\{\frac{1}{2k}>-3}\end{array}\right.$即$\left\{\begin{array}{l}{k>0或k<-\frac{2}{5}}\\{k≠-1}\\{\frac{-1-\sqrt{2}}{2}<k<\frac{-1+\sqrt{2}}{2}}\\{k>0或k<-\frac{1}{6}}\end{array}\right.$,
解得0<k<$\frac{\sqrt{2}-1}{2}$或$\frac{-1-\sqrt{2}}{2}$<k<-1或-1<k≤-$\frac{2}{5}$.
综上存在实数k,使得射线y=kx(x≥-3)与曲线y=f1(x)有三个公共点,
且k的范围是(0,$\frac{\sqrt{2}-1}{2}$)∪($\frac{-1-\sqrt{2}}{2}$,-1)∪(-1,-$\frac{2}{5}$];
(Ⅲ)证明:fn(x)=$\frac{n{x}^{2}-x}{{x}^{2}+1}$的导数为f′n(x)=$\frac{{x}^{2}+2nx-1}{({x}^{2}+1)^{2}}$,
fn($\frac{1}{n}$)=0,f′n($\frac{1}{n}$)=$\frac{{n}^{2}}{{n}^{2}+1}$,
即有y=fn(x)在($\frac{1}{n}$,fn($\frac{1}{n}$))处的切线的方程为y=$\frac{{n}^{2}}{{n}^{2}+1}$(x-$\frac{1}{n}$),
当0<x<1时,fn(x)-$\frac{{n}^{2}}{{n}^{2}+1}$(x-$\frac{1}{n}$)=$\frac{n{x}^{2}-x}{{x}^{2}+1}$-$\frac{{n}^{2}}{{n}^{2}+1}$(x-$\frac{1}{n}$)=$\frac{(n-x)(nx-1)^{2}}{({x}^{2}+1)({n}^{2}+1)}$≥0,
即有fn(x)≥$\frac{{n}^{2}}{{n}^{2}+1}$(x-$\frac{1}{n}$),
xi>0(i=1,2,…,n),且x1+x2+…+xn=1,即有0<xi<1,i=1,2,…,n.
fn(xi)≥$\frac{{n}^{2}}{{n}^{2}+1}$(xi-$\frac{1}{n}$),
fn(x1)+fn(x2)+…+fn(xn)≥$\frac{{n}^{2}}{{n}^{2}+1}$(x1-$\frac{1}{n}$+x2-$\frac{1}{n}$+…+xn-$\frac{1}{n}$)
即有fn(x1)+fn(x2)+…+fn(xn)≥$\frac{{n}^{2}}{{n}^{2}+1}$(x1+x2+…+xn-$\frac{1}{n}$•n)=0,
综上可得fn(x1)+fn(x2)+…+fn(xn)≥0.

点评 本题考查导数的运用:求切线方程和单调区间、极值和最值,同时考查二次方程实根的分布,考查分类讨论的思想方法以及化简整理的运算能力和不等式的证明,属于中档题和易错题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网