题目内容

已知f(x)=x3+3bx2+3cx有两个极值点x1,x2,且x1∈[-1,0],x2∈[1,2],则f(1)的取值范围是(  )
分析:根据函数f(x)的极值点的范围,对原函数求导,借助导函数所对应方程根的分布情况,列出对应的不等式组,然后可以直接求解,也可采用取特值排除不适合控制不等式组的选项.
解答:解:由f(x)=x3+3bx2+3cx得f(x)=3x2+6bx+3c,令f(x)=0得g(x)=x2+2bx+c=0,
∵x1∈[-1,0],x2∈[1,2],则
g(-1)=1-2b+c≥0
g(0)=c≤0
g(1)=1+2b+c≤0
g(2)=4+4b+c≥0

又f(1)=1+3b+3c+3(b+c)+1,取f(1)=-2,得 b+c=-1,b=-c-1,将b=-c-1分别代入上面不等式中的g(-1),
g(0),g(1),g(2)得到-1≤c≤0有解,说明f(1)=-2满足,所以可排除A,D.再取f(1)=-8,同理可得控制不等式组有解,故可排除C.
故选B.
点评:解题时需明确两点,一是极值点处的导数为0,再就是求导后能正确把导函数所对应方程根的分布情况转化为控制待求系数的不等式组.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网