题目内容

定义域为R的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,若x∈[-4,-2]时,f(x)≥
1
18
(
3
t
-t)
恒成立,则实数t的取值范围是______.
设x∈[-4,-2],则x+4∈[0,2]
f(x+4)=(x+4)2-2(x+4)=x2+6x+8=3f(x+2)=9f(x)
即f(x)=
1
9
(x2+6x+8)
∵f(x)=
1
9
(x2+6x+8)≥
1
18
(
3
t
-t)
恒成立
3
t
-t
1
2
(x2+6x+8)min=-
1
2

解得:t∈[-
3
2
,0)∪[2,+∞)
故答案为:[-
3
2
,0)∪[2,+∞)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网