题目内容
已知数列{an}的各项均为正数,Sn为其前n项和,且对任意的n∈N+,有Sn=| 3 |
| 2 |
| 3 |
| 2 |
(1)求数列{an}的通项公式;
(2)设bn=
| 1 |
| log3an•log3an+1 |
分析:(1)由已知得Sn=
an-
,所以an=Sn-Sn-1=
an-
an-1,即an=
an-
an-1,由此可以推导出an=3n.
(2)由题设知bn=
=
=
-
,由此用裂项求和法可知{bn}的前n项和.
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
(2)由题设知bn=
| 1 |
| log3an•log3an+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)由已知得Sn=
an-
,
∴当n≥2时,Sn-1=
an-1-
;
∴Sn-Sn-1=
an-
an-1,即an=
an-
an-1,
∴当n≥2时,an=3an-1;
∴数列{an}为等比数列,且公比q=3;
又当n=1时,S1=
a1-
,
即a1=
a1-
,∴a1=3;
∴an=3n.
(2)∵log3an=log33n=n,
∴bn=
=
=
-
;
∴{bn}的前n项和Tn=(1-
)+(
-
)+(
-
)++(
-
)=1-
=
.
| 3 |
| 2 |
| 3 |
| 2 |
∴当n≥2时,Sn-1=
| 3 |
| 2 |
| 3 |
| 2 |
∴Sn-Sn-1=
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
∴当n≥2时,an=3an-1;
∴数列{an}为等比数列,且公比q=3;
又当n=1时,S1=
| 3 |
| 2 |
| 3 |
| 2 |
即a1=
| 3 |
| 2 |
| 3 |
| 2 |
∴an=3n.
(2)∵log3an=log33n=n,
∴bn=
| 1 |
| log3an•log3an+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴{bn}的前n项和Tn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查数项的通项公式的求法和裂项求和法的运用,解题时要注意运算能力的培养.
练习册系列答案
相关题目