题目内容

已知正项数列{an}的前项和为Sn,且满足
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)设
(Ⅲ)设,求证:
(Ⅰ)证明:∵2=an+1,

∴a n+1=S n+1﹣Sn==
即:2(a n+1+an)=(an+1+an)(an+1﹣an),
∴(an+1+an)(an+1﹣an﹣2)=0,
∵an>0,∴a n+1+an>0,
∴an+1﹣an﹣2=0,
∴a n+1﹣an=2,
当n=1时,S1=,即a1=
,解得a1=1.
∴数列{an}是首项为a1=1,公差d=2的等差数列.
(Ⅱ)解:由(Ⅰ)知:an=a1+(n﹣1)d=2n﹣1,
=
∴Tn=b1+b2+…+bn=,   ①
=,                            ②
①﹣②得:==

(Ⅲ)证明:由(Ⅱ)得:=
==
∴c1+c2+c3+…+cn=
                              =
故,
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网