题目内容

已知实数a满足1<a≤2,设函数f (x)=x3x2ax

(Ⅰ) 当a=2时,求f (x)的极小值;

(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,

求证:g(x)的极大值小于等于10.

本题主要考查函数的极值概念、导数运算法则、导数应用等基础知识,

同时考查抽象概括、运算求解能力和创新意识。满分15分。

 (Ⅰ)解:当a=2时,f ′(x)=x2-3x+2=(x-1)(x-2).

         列表如下:

x

(-,1)

1

(1,2)

2

(2,+)

f ′(x)

0

0

f (x)

单调递增

极大值

单调递减

极小值

单调递增

所以,f (x)的极小值为f (2)=.…………………………………6分

 (Ⅱ) 解:f ′(x)=x2-(a+1)xa=(x-1)(xa).

由于a>1,

所以f (x)的极小值点xa,则g(x)的极小值点也为xa

g ′ (x)=12x2+6bx-6(b+2)=6(x-1)(2xb+2),

所以

b=-2(a+1).

又因为1<a≤2,

所以  g(x)极大值g(1)

=4+3b-6(b+2)

=-3b-8

=6a-2

≤10.

g(x)的极大值小于等于10.…………………………15分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网