题目内容
数列{an}的前n项和为Sn,a1=1,Sn=
an+1(n∈N*).
(1)求a2,a3.
(2)求数列{an}的通项an;
(3)求数列{nan}的前n项和Tn.
| 1 |
| 2 |
(1)求a2,a3.
(2)求数列{an}的通项an;
(3)求数列{nan}的前n项和Tn.
(1)令n=1,得到S1=a1=
a2,由a1=1,得到a2=2,
令n=2,得到S2=a1+a2=
a3,
则a3=2(1+2)=6;(3分)
(2)∵an+1=2Sn,∴Sn+1-Sn=2Sn,
∴
=3.
又∵S1=a1=1,
∴数列Sn是首项为1,公比为3的等比数列,Sn=3n-1(n∈N*).(5分)
当n≥2时,an=2Sn-1=2•3n-2(n≥2),
∴an=
;(8分)
(3)Tn=a1+2a2+3a3+…+nan,
当n=1时,T1=1;
当n≥2时,Tn=1+4•30+6•31+…+2n•3n-2①,
3Tn=3+4•31+6•32+…+2n•3n-1②,
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1
=2+2•
-2n•3n-1
=-1+(1-2n)•3n-1.
∴Tn=
+(n-
)3n-1(n≥2).
又∵T1=a1=1也满足上式,
∴Tn=
+(n-
)3n-1(n∈N*).(14分)
| 1 |
| 2 |
令n=2,得到S2=a1+a2=
| 1 |
| 2 |
则a3=2(1+2)=6;(3分)
(2)∵an+1=2Sn,∴Sn+1-Sn=2Sn,
∴
| Sn+1 |
| Sn |
又∵S1=a1=1,
∴数列Sn是首项为1,公比为3的等比数列,Sn=3n-1(n∈N*).(5分)
当n≥2时,an=2Sn-1=2•3n-2(n≥2),
∴an=
|
(3)Tn=a1+2a2+3a3+…+nan,
当n=1时,T1=1;
当n≥2时,Tn=1+4•30+6•31+…+2n•3n-2①,
3Tn=3+4•31+6•32+…+2n•3n-1②,
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1
=2+2•
| 3(1-3n-2) |
| 1-3 |
=-1+(1-2n)•3n-1.
∴Tn=
| 1 |
| 2 |
| 1 |
| 2 |
又∵T1=a1=1也满足上式,
∴Tn=
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目