题目内容
(本小题满分14分)
已知函数
是
的反函数,函数
.
(Ⅰ)若
,解关于x的不等式
;
(Ⅱ)若
在
上恒成立,求a的取值范围;
(Ⅲ)求证:
.
解:(Ⅰ)∵
,∴
,
∴
,∴
,
∴
在
上是增函数,
上是减函数,
∵
, ∴
,
∵
,∴
,
∴不等式的解集为{x|
或
},
(Ⅱ)设
,
∴
,
当
即
时,
在
上是减函数,
∴
,即
,故
在
上不恒成立,
当
即
时,
在
上是增函数,
∴
,
∴
时,
在
上恒成立,
(Ⅲ)由(Ⅱ)
时,
在
上恒成立,
令
时,![]()
令
,则
,
∴
,
将上述n个式子相加
,
∴
.
练习册系列答案
相关题目