题目内容
log2
+log212-
log242=
|
| 1 |
| 2 |
-
| 1 |
| 2 |
-
.| 1 |
| 2 |
分析:化根式为分数指数幂,然后把真数写成乘积的形式,然后直接利用对数的运算性质化简求值.
解答:解:log2
+log212-
log242
=
(log27-log248)+log2(3×4)-
log2(6×7)
=
log27-
log2(6×8)+log23+log24-
log26-
log27
=-
log26-
+log23+2-
log26
=-log26-
+log23+2
=-log23-1-
+log23+2
=-
.
故答案为-
.
|
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=-
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
=-log26-
| 3 |
| 2 |
=-log23-1-
| 3 |
| 2 |
=-
| 1 |
| 2 |
故答案为-
| 1 |
| 2 |
点评:本题考查了对数的运算性质,考查了计算能力,是基础的计算题.
练习册系列答案
相关题目