题目内容

设数列{an}的前n项和Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.

(1)求数列{an}和{bn}的通项公式;

(2)设cn=,求数列{cn}的前n项和Tn.

(1)an= 4n-2,bn=2·n-1(2)Tn=-·4n


解析:

(1)由于Sn=2n2,∴n=1时,a1=S1=2;

n≥2时,an=Sn-Sn-1??=2n2-2(n-1)2=4n-2,

当n=1时也适合.

∴an=4n-2,∴b1=a1=2,b2(6-2)=b1=2,

∴b2=,∴bn=2·n-1.

(2)cn==(2n-1)·4n-1

∴Tn=1+3·4+5·42+…+(2n-1)·4n-1

∴4Tn=4+3·42+…+(2n-3)·4n-1+(2n-1)·4n

∴-3Tn=1+2·4+2·42+…+2·4n-1-(2n-1)·4n

=1+2·-(2n-1)·4n=·4n-

∴Tn=-·4n.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网