题目内容
数列{an}的前n项和Sn,当n≥1时,Sn+1是an+1与Sn+1+k的等比中项(k≠0).
(1)求证:对于n≥1有
-
=
;
(2)设a1=-
,求Sn;
(3)对n≥1,试证明:S1S2+S2S3+…+SnSn+1<
.
(1)求证:对于n≥1有
| 1 |
| Sn |
| 1 |
| Sn+1 |
| 1 |
| k |
(2)设a1=-
| k |
| 2 |
(3)对n≥1,试证明:S1S2+S2S3+…+SnSn+1<
| k2 |
| 2 |
证明:(1)由Sn+12=an+1•(Sn+1+k)而an+1=Sn+1-Sn
∴Sn+12=(Sn+1-Sn)(Sn+1+k)
∴-Sn+1Sn+k(Sn+1-Sn)=0
等式两边同除Sn+1Sn得:-1+k(
-
)=0
∴
-
=
;(4分)
(2)由(1)知:{
}是以-
为首项,
以
为公差的等差数列,
∴
=-
∴Sn=-
;(8分)
(3)S1S2+S2S3+…+SnSn+1
=
+
++
=k2[(
-
)+(
-
)++(
-
)]
=k2(
-
)<
.(12分)
∴Sn+12=(Sn+1-Sn)(Sn+1+k)
∴-Sn+1Sn+k(Sn+1-Sn)=0
等式两边同除Sn+1Sn得:-1+k(
| 1 |
| Sn |
| 1 |
| Sn+1 |
∴
| 1 |
| Sn |
| 1 |
| Sn+1 |
| 1 |
| k |
(2)由(1)知:{
| 1 |
| Sn |
| 2 |
| k |
以
| -1 |
| k |
∴
| 1 |
| Sn |
| n+1 |
| k |
∴Sn=-
| k |
| n+1 |
(3)S1S2+S2S3+…+SnSn+1
=
| k2 |
| 2•3 |
| k2 |
| 3•4 |
| k2 |
| (n+1)(n+2) |
=k2[(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=k2(
| 1 |
| 2 |
| 1 |
| n+2 |
| k2 |
| 2 |
练习册系列答案
相关题目