题目内容
1
1
.分析:先由tan45°=tan(15°+30°),利用特殊角的三角函数值及两角和与差的正切函数公式化简,整理后得到tan15°+tan30°=1-tan15°tan30°,然后根据题中的选择结构将所求式子的新定义运算转化为普通运算,整理后将tan15°+tan30°=1-tan15°tan30°代入,即可求出值.
解答:解:∵tan45°=tan(15°+30°)=
=1,
∴tan15°+tan30°=1-tan15°tan30°,
根据题意得:tan15°?tan30°+tan30°?tan15°
=tan15°tan30°+tan15°+tan30°
=tan15°tan30°+1-tan15°tan30°
=1.
故答案为:1
| tan15°+tan30° |
| 1-tan15°tan30° |
∴tan15°+tan30°=1-tan15°tan30°,
根据题意得:tan15°?tan30°+tan30°?tan15°
=tan15°tan30°+tan15°+tan30°
=tan15°tan30°+1-tan15°tan30°
=1.
故答案为:1
点评:此题考查了两角和与差的正切函数公式,以及特殊角的三角函数值,利用了整体代入的思想,属于新定义的题型,理解本题的选择结构是解本题的关键.
练习册系列答案
相关题目