题目内容
已知等差数列{an}的前n项和为Sn,若m>1且am-1+am+1-am2-1=0,S2m-1=39,则m等于( )
| A.10 | B.19 | C.20 | D.39 |
∵数列{an}为等差数列
则am-1+am+1=2am
则am-1+am+1-am2-1=0可化为
2am-am2-1=0
解得:am=1,又∵S2m-1=(2m-1)am=39
则m=20
故选C.
则am-1+am+1=2am
则am-1+am+1-am2-1=0可化为
2am-am2-1=0
解得:am=1,又∵S2m-1=(2m-1)am=39
则m=20
故选C.
练习册系列答案
相关题目