题目内容
已知函数f(x)=
(x<-2).
(Ⅰ)求f -1(x);
(Ⅱ)若a1=1,
=-f-1(an)(n∈N+),求an;
(Ⅲ)设bn=an+12+an+22+…+a2n+12,是否存在最小的正整数k,使对于任意n∈N+有bn<
成立. 若存在,求出k的值;若不存在,说明理由.
| 1 | ||
|
(Ⅰ)求f -1(x);
(Ⅱ)若a1=1,
| 1 |
| an+1 |
(Ⅲ)设bn=an+12+an+22+…+a2n+12,是否存在最小的正整数k,使对于任意n∈N+有bn<
| k |
| 25 |
(1)∵f(x)=
(x<-2)∴f(x)>0∴f-1(x)=-
(x>0)
(2)∴
=
(an>0)∴
=
+4
∴{
}是以
=1为首项,以4为公差的等差数列、
∴
=4n-3∴an=
(n∈N*)、
(3)∴bn=an+12+an+22+…+a2n+12=
+
+…+
bn+1=
+
+…+
∴bn+1-bn=
+
-
<
+
-
=0
∴bn+1<bn∴{bn}是一单调递减数列.∴bn≤b1=
(n∈N*)
要使bn<
则
<
∴k>
又k∈N*∴k≥8∴kmin=8
即存在最小的正整数k=8,使得bn<
.
| 1 | ||
|
| ||
| x |
(2)∴
| 1 |
| an+1 |
| ||
| an |
| 1 |
| an+12 |
| 1 |
| an2 |
∴{
| 1 |
| an2 |
| 1 |
| a12 |
∴
| 1 |
| an2 |
| 1 | ||
|
(3)∴bn=an+12+an+22+…+a2n+12=
| 1 |
| 4n+1 |
| 1 |
| 4n+5 |
| 1 |
| 8n+1 |
| 1 |
| 4n+5 |
| 1 |
| 4n+9 |
| 1 |
| 8n+9 |
∴bn+1-bn=
| 1 |
| 8n+5 |
| 1 |
| 8n+9 |
| 1 |
| 4n+1 |
| 1 |
| 8n+2 |
| 1 |
| 8n+2 |
| 1 |
| 4n+1 |
∴bn+1<bn∴{bn}是一单调递减数列.∴bn≤b1=
| 14 |
| 45 |
要使bn<
| k |
| 25 |
| 14 |
| 45 |
| k |
| 25 |
| 70 |
| 9 |
即存在最小的正整数k=8,使得bn<
| k |
| 25 |
练习册系列答案
相关题目