题目内容
在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则
=
- A.2
- B.4
- C.5
- D.10
D
分析:以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出
的值.
解答:
以D为原点,AB所在直线为x轴,建立如图坐标系,
∵AB是Rt△ABC的斜边,
∴以AB为直径的圆必定经过C点
设AB=2r,∠CDB=α,则
A(-r,0),B(r,0),C(rcosα,rsinα)
∵点P为线段CD的中点,
∴P(
rcosα,
rsinα)
∴|PA|2=
+
=
+r2cosα,
|PB|2=
+
=
-r2cosα,
可得|PA|2+|PB|2=
r2
又∵点P为线段CD的中点,CD=r
∴|PC|2=
=
r2
所以:
=
=10
故选D
点评:本题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题.
分析:以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出
解答:
∵AB是Rt△ABC的斜边,
∴以AB为直径的圆必定经过C点
设AB=2r,∠CDB=α,则
A(-r,0),B(r,0),C(rcosα,rsinα)
∵点P为线段CD的中点,
∴P(
∴|PA|2=
|PB|2=
可得|PA|2+|PB|2=
又∵点P为线段CD的中点,CD=r
∴|PC|2=
所以:
故选D
点评:本题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题.
练习册系列答案
相关题目