题目内容
已知{an}为等比数列,下面结论中正确的是( )
| A.a1+a3≥2a2 | B.
| ||||||
| C.若a1=a3,则a1=a2 | D.若a3>a1,则a4>a2 |
设等比数列的公比为q,则a1+a3=
+a2q,当且仅当a2,q同为正时,a1+a3≥2a2成立,故A不正确;
+
=(
)2+( a2q)2≥2
,∴
+
≥2
,故B正确;
若a1=a3,则a1=a1q2,∴q2=1,∴q=±1,∴a1=a2或a1=-a2,故C不正确;
若a3>a1,则a1q2>a1,∴a4-a2=a1q(q2-1),其正负由q的符号确定,故D不正确
故选B.
| a2 |
| q |
| a | 21 |
| a | 23 |
| a2 |
| q |
| a | 22 |
| a | 21 |
| a | 23 |
| a | 22 |
若a1=a3,则a1=a1q2,∴q2=1,∴q=±1,∴a1=a2或a1=-a2,故C不正确;
若a3>a1,则a1q2>a1,∴a4-a2=a1q(q2-1),其正负由q的符号确定,故D不正确
故选B.
练习册系列答案
相关题目