题目内容
已知数列{an}的前n项和Sn满足S2=3,2Sn=n+nan,n∈N*.(1)求{an}的通项公式,并求数列{2n-1•an}的前n项和Tn;
(2)设bn=2an+1,证明:
| n |
| 2 |
| 1 |
| 7 |
| b1-1 |
| b2-1 |
| b2-1 |
| b3-1 |
| bn-1 |
| bn+1-1 |
| n |
| 2 |
分析:(1)当n≥2时,2Sn=n+nan,2Sn-1=n-1+(n-1)an-1,两式相减得2an=1+nan-(n-1)an-1,再写一式,相减整理可得an+1+an-1=2an,从而数列{an}是以1为首项,1为公差的等差数列,可求数列的通项.
(2)先确定
-
•
≤
<
,再求和即可证明.
(2)先确定
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 2k |
| bk-1 |
| bk+1-1 |
| 1 |
| 2 |
解答:解:(1)当n=1时,2a1=1+a1,∴a1=1
当n≥2时,2Sn=n+nan,2Sn-1=n-1+(n-1)an-1,相减得2an=1+nan-(n-1)an-1,∴2an+1=1+(n+1)an+1-nan,相减得(n-1)an+1+(n-1)an-1=2(n-1)an,即当n≥2时,an+1+an-1=2an
又S2=3,a1=1,∴a2=2,∴数列{an}是以1为首项,1为公差的等差数列,∴an=n
∴Tn=1+2•2+3•22++n•2n-1,2Tn=2+2•22++n•2n,相减整理得Tn=(n-1)•2n+1
(2)bn=2n+1,∴
<
,k=1,2,n,∴
+
+…+
<
.
=
-
≥
-
•
,k=1,2,n
∴
+
+…+
>
-
.
∴
-
<
+
+…+
<
.
当n≥2时,2Sn=n+nan,2Sn-1=n-1+(n-1)an-1,相减得2an=1+nan-(n-1)an-1,∴2an+1=1+(n+1)an+1-nan,相减得(n-1)an+1+(n-1)an-1=2(n-1)an,即当n≥2时,an+1+an-1=2an
又S2=3,a1=1,∴a2=2,∴数列{an}是以1为首项,1为公差的等差数列,∴an=n
∴Tn=1+2•2+3•22++n•2n-1,2Tn=2+2•22++n•2n,相减整理得Tn=(n-1)•2n+1
(2)bn=2n+1,∴
| bk-1 |
| bk+1-1 |
| 1 |
| 2 |
| b1-1 |
| b2-1 |
| b2-1 |
| b3-1 |
| bn-1 |
| bn+1-1 |
| n |
| 2 |
| bk-1 |
| bk+1-1 |
| 1 |
| 2 |
| 1 |
| 7•2k+2k-2 |
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 2k |
∴
| b1-1 |
| b2-1 |
| b2-1 |
| b3-1 |
| bn-1 |
| bn+1-1 |
| n |
| 2 |
| 1 |
| 7 |
∴
| n |
| 2 |
| 1 |
| 7 |
| b1-1 |
| b2-1 |
| b2-1 |
| b3-1 |
| bn-1 |
| bn+1-1 |
| n |
| 2 |
点评:本题考查数列的通项与前n项和共存时处理的方法,考查错位相减法求数列的和,同时考查了放缩法证明不等式,有一定的难度.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |