题目内容
已知f(x)=ax3-bx5+cx3+2,且f(-5)=3 则f(5)+f(-5)=______.
设g(x)=ax7-bx5+cx3,则g(-x)=-ax7+bx5-cx3=-g(x),
∴g(5)=-g(-5),即g(5)+g(-5)=0
∴f(5)+f(-5)=g(5)+g(-5)+4=4,
故答案为:4.
∴g(5)=-g(-5),即g(5)+g(-5)=0
∴f(5)+f(-5)=g(5)+g(-5)+4=4,
故答案为:4.
练习册系列答案
相关题目
已知F(x)=ax3+bx5+cx3+dx-6,F(-2)=10,则F(2)的值为( )
| A、-22 | B、10 | C、-10 | D、22 |