题目内容
下列四个结论:
①幂函数y=xα的图象与与直线y=x可能有三个交点;
②若b≤0,则函数y=ax+b-1(a>0,a≠1)的图象不经过第一象限;
③若x+x-1=3,则
=1;
④函数
定义域为R,则m的取值范围为[0,
);
其中正确结论个数为
- A.①④
- B.①②③
- C.①③
- D.②④
A
分析:①:可举例验证①是否正确
②:分类讨论a的范围,结合指数函数的图象变换可验证②是否正确
③:把
平方后,化简,再开方,可验证③是否正确
④:把条件转化,即得mx2+4mx+3≠0在R上恒成立,分类讨论,可得m的范围,即可验证④是否正确
解答:对于①:y=x3与y=x有三个交点∴①正确
对于②:当a>1时,图象过第一象限∴②不正确
对于③:∵x+x-1=3
∴
∴
∴③不正确
对于④:∵
的定义域为R
∴mx2+4mx+3≠0对x∈R恒成立
∴当m=0时,得3≠0,显然成立,∴m=0符合题意
当m≠0时,由题意知
解得
∴当原函数定义域为R时,m的取值范围为
∴④正确
综上所述,正确的结论有①④
故选A
点评:本题考查指数函数、幂函数的图象,指数运算以及函数定义域问题,要求对指数函数幂函数的图象及图象变换熟练掌握,对恒成立问题要注意分类讨论.属简单题
分析:①:可举例验证①是否正确
②:分类讨论a的范围,结合指数函数的图象变换可验证②是否正确
③:把
④:把条件转化,即得mx2+4mx+3≠0在R上恒成立,分类讨论,可得m的范围,即可验证④是否正确
解答:对于①:y=x3与y=x有三个交点∴①正确
对于②:当a>1时,图象过第一象限∴②不正确
对于③:∵x+x-1=3
∴
∴
∴③不正确
对于④:∵
∴mx2+4mx+3≠0对x∈R恒成立
∴当m=0时,得3≠0,显然成立,∴m=0符合题意
当m≠0时,由题意知
解得
∴当原函数定义域为R时,m的取值范围为
∴④正确
综上所述,正确的结论有①④
故选A
点评:本题考查指数函数、幂函数的图象,指数运算以及函数定义域问题,要求对指数函数幂函数的图象及图象变换熟练掌握,对恒成立问题要注意分类讨论.属简单题
练习册系列答案
相关题目