题目内容
已知一个数列{an}的前n项和是Sn=
n2+
n+3,
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明{an}不是等差数列.
| 1 |
| 4 |
| 2 |
| 3 |
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明{an}不是等差数列.
(1)∵Sn=
n2+
n+3,
∴a1=S1=
+
+3=
,
(2)由an=Sn-Sn-1(n≥2)得,
an=
n2+
n+3-
(n-1)2-
(n-1)-3=
n-
,
当n=1时,a1=
,
∴an=
,
(3)当n≥2,an=
n-
是等差数列,当n=1时,a1不满足等式,
故{an}不是等差数列.
| 1 |
| 4 |
| 2 |
| 3 |
∴a1=S1=
| 1 |
| 4 |
| 2 |
| 3 |
| 47 |
| 12 |
(2)由an=Sn-Sn-1(n≥2)得,
an=
| 1 |
| 4 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 3 |
| 1 |
| 2 |
| 5 |
| 12 |
当n=1时,a1=
| 1 |
| 12 |
∴an=
|
(3)当n≥2,an=
| 1 |
| 2 |
| 5 |
| 12 |
故{an}不是等差数列.
练习册系列答案
相关题目