题目内容
函数y=sin(2x+
)图象的对称中心的坐标是________.
(
,0),k∈Z
分析:根据正弦函数图象与性质,令原题中三角函数中的角度等于kπ,解出x,即为对称中心的横坐标,又纵坐标为0,从而得到对称中心坐标.
解答:令2x+
=kπ,k∈Z,
解得:x=
kπ-
,k∈Z,
则函数
的图象的对称中心的坐标是(
,0)k∈Z.
故答案为:(
,0)k∈Z
点评:此题考查了正弦函数的对称性,熟练掌握正弦函数的对称中心是解本题的关键.
分析:根据正弦函数图象与性质,令原题中三角函数中的角度等于kπ,解出x,即为对称中心的横坐标,又纵坐标为0,从而得到对称中心坐标.
解答:令2x+
解得:x=
则函数
故答案为:(
点评:此题考查了正弦函数的对称性,熟练掌握正弦函数的对称中心是解本题的关键.
练习册系列答案
相关题目