题目内容
已知函数f(x)在R上满足f(1+x)=2f(1-x)-x2+3x+1,则曲线y=f(x)在点(1,f(1))处的切线方程是( )A.x-y-2=0
B.x-y=0
C.3x+y-2=0
D.3x-y-2=0
【答案】分析:对等式两边进行求导数,通过赋值求切线斜率;对等式赋值求切点坐标;据点斜式写出直线方程.
解答:解:∵f(1+x)=2f(1-x)-x2+3x+1
∴f′(1+x)=-2f′(1-x)-2x+3
∴f′(1)=-2f′(1)+3
∴f′(1)=1
f(1+x)=2f(1-x)-x2+3x+1
∴f(1)=2f(1)+1
∴f(1)=-1
∴切线方程为:y+1=x-1即x-y-2=0
故选A
点评:本题考查对数的几何意义,在切点处的对数值是切线斜率,求切线方程.
解答:解:∵f(1+x)=2f(1-x)-x2+3x+1
∴f′(1+x)=-2f′(1-x)-2x+3
∴f′(1)=-2f′(1)+3
∴f′(1)=1
f(1+x)=2f(1-x)-x2+3x+1
∴f(1)=2f(1)+1
∴f(1)=-1
∴切线方程为:y+1=x-1即x-y-2=0
故选A
点评:本题考查对数的几何意义,在切点处的对数值是切线斜率,求切线方程.
练习册系列答案
相关题目
已知函数f(x)在R上满足y=f(x)=2f(2-x)+ex-1+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是( )
| A、2x-y-1=0 | B、x-y-3=0 | C、3x-y-2=0 | D、2x+y-3=0 |