题目内容

已知函数f(x)在定义域R内是增函数,且f(x)<0,则g(x)=x2f(x)的单调情况一定是(  )
A.在(-∞,0)上递增B.在(-∞,0)上递减
C.在R上递减D.在R上递增
∵函数f(x)在定义域R内是增函数
∴f'(x)>0在定义域R上恒成立
∵g(x)=x2f(x)
∴g'(x)=2xf(x)+x2f'(x)
当x<0时,而f(x)<0,则2xf(x)>0,x2f'(x)>0所以g'(x)>0
即g(x)=x2f(x)在(-∞,0)上递增
当x>0时,2xf(x)<0,x2f'(x)>0,则g'(x)的符号不确定,从而单调性不确定
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网