题目内容

若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列{
Sn
n
}
为等差数列,且通项为
Sn
n
=a1+(n-1)•
d
2
.类似地,若各项均为正数的等比数列{bn}的首项为b1,公比为q,前n项的积为Tn,则数列{
nTn
}
为等比数列,通项为 ______.
因为在等差数列{an}中前n项的和为Sn的通项,且写成了
Sn
n
=a1+(n-1)•
d
2

所以在等比数列{bn}中应研究前n项的积为Tn的开n方的形式.
类比可得
nTn
=b1(
q
)n-1

故答案为
nTn
=b1(
q
)n-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网