题目内容
已知函数f(x)=ln(x+1),h(x)=
,设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)当x>0时,比较f(x)和h(x)的大小;
(2)求数列{an}的通项公式;
(3)令cn=(-1)n+1log
2,数列{cn}的前n项和为Tn,求证:当n∈N*且n≥2时,T2n<
.
| x |
| x+1 |
(1)当x>0时,比较f(x)和h(x)的大小;
(2)求数列{an}的通项公式;
(3)令cn=(-1)n+1log
| an |
| n+1 |
| ||
| 2 |
解(1)令g(x)=ln(x+1)-
(x>0),则g′(x)=
-
=
>0,
∴g(x)在(0,+∞)时单调递增,g(x)>g(0)=0,即当x>0时,ln(x+1)>
即当x>0时,f(x)>h(x),
(2)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
-
=1,所以数列{
}是公差为1的等差数列.
又S1=2a1-22,所以a1=4.
所以
=2+(n-1)=n+1,故an=(n+1)•2n.
(3)因为cn=(-1)n+1•
,
则当n≥2时,T2n=1-
+
-
+…+
-
=(1+
+
+…+
)-2(
+
+…+
)=
+
+…+
.
下面证
+
++
<
由(1)知当x>0时,ln(x+1)>
令x=
,ln
>
?ln(n+1)-lnn>
,ln(n+2)-ln(n+1)>
,
,ln(n+3)-ln(n+2)>
,ln(2n)-ln(2n-1)>
以上n个式相加,即有ln(2n)-lnn>
+
+…+
∴
+
+…+
<ln(2n)-lnn=ln2<
.
| x |
| x+1 |
| 1 |
| x+1 |
| 1 |
| (x+1)2 |
| x |
| (x+1)2 |
∴g(x)在(0,+∞)时单调递增,g(x)>g(0)=0,即当x>0时,ln(x+1)>
| x |
| x+1 |
即当x>0时,f(x)>h(x),
(2)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
| an |
| 2n |
| an-1 |
| 2n-1 |
| an |
| 2n |
又S1=2a1-22,所以a1=4.
所以
| an |
| 2n |
(3)因为cn=(-1)n+1•
| 1 |
| n |
则当n≥2时,T2n=1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
下面证
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| ||
| 2 |
由(1)知当x>0时,ln(x+1)>
| x |
| x+1 |
令x=
| 1 |
| n |
| n+1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
,ln(n+3)-ln(n+2)>
| 1 |
| n+3 |
| 1 |
| 2n |
以上n个式相加,即有ln(2n)-lnn>
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
∴
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| ||
| 2 |
练习册系列答案
相关题目