题目内容
设数列{an}的前n项和为Sn,且3Sn=an+4.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=3Sn求数列{bn}的前n项和Tn.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=3Sn求数列{bn}的前n项和Tn.
分析:(I)已知数列{an}的前n项和为Sn,且3Sn=an+4,利用公式sn-sn-1=an,求出数列{an}的通项公式;
(II)因为数列{bn}满足bn=3Sn,可以推出an与bn之间的关系,只要求出an的前n项和,就可求解;
(II)因为数列{bn}满足bn=3Sn,可以推出an与bn之间的关系,只要求出an的前n项和,就可求解;
解答:解:(I)∵3Sn=an+4,∴3Sn+1=an+1+4,
两式相减得:3(Sn+1-Sn)=an+1-an,∴
=-
,
又∵3a1=a1+4,∴a1=2,
∴an=2(-
)n-1,
(II)由(I)得bn=3Sn=an+4,
∴Tn=b1+b2+b3+…+bn=(a1+4)+(a2+4)+…+(an+4)=Sn+4n,
又∵Sn=
=
(-
)n-1+
,
∴Tn=
(-
)n-1+
,
∴Tn=
(-
)n-1+4n+
;
两式相减得:3(Sn+1-Sn)=an+1-an,∴
| an+1 |
| an |
| 1 |
| 2 |
又∵3a1=a1+4,∴a1=2,
∴an=2(-
| 1 |
| 2 |
(II)由(I)得bn=3Sn=an+4,
∴Tn=b1+b2+b3+…+bn=(a1+4)+(a2+4)+…+(an+4)=Sn+4n,
又∵Sn=
| an+4 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 4 |
| 3 |
∴Tn=
| 2 |
| 3 |
| 1 |
| 2 |
| 4 |
| 3 |
∴Tn=
| 2 |
| 3 |
| 1 |
| 2 |
| 4 |
| 3 |
点评:本题主要考查数列求和问题、等比数列和等比数列的前n项和公式.考查学生的运算能力,是一道基础题;
练习册系列答案
相关题目