题目内容
已知函数y=f(x)是定义在R上恒不为0的单调函数,对任意的x,y∈R,总有f(x)f(y)=f(x+y)成立,若数列{an}的n项和为Sn,且满足a1=f(0),f(an+1)=| 1 | f(3n+1-2an) |
分析:首先求出特殊值f(0),然后结合f(x)f(y)=f(x+y)把已知条件变形为an+1与an的关系式,进一步整理得数列{an+3n+1}为等比数列,再运用等比数列通项公式求得an,最后分别运用等比数列前n项和公式求得Sn.
解答:解:因为任意的x,y∈R,总有f(x)f(y)=f(x+y)成立,
所以f(0)f(0)=f(0),即f(0)•(f(0)-1)=0,
解得f(0)=1,即a1=1,
又f(an+1)•f(3n+1-2an)=1,即f(an+1+3n+1-2an)=f(0),
所以an+1+3n+1-2an=0,
则an+1+3n+1+2×3n+1=2an+2×3n+1,,即
=2,
所以数列{an+3n+1}是首项为10,公比为2的等比数列,
则an+3n+1=10×2n-1,即an=5×2n-3n+1,
所以Sn=5×
-
=5×2n+1-
.
故答案为5×2n+1-
.
所以f(0)f(0)=f(0),即f(0)•(f(0)-1)=0,
解得f(0)=1,即a1=1,
又f(an+1)•f(3n+1-2an)=1,即f(an+1+3n+1-2an)=f(0),
所以an+1+3n+1-2an=0,
则an+1+3n+1+2×3n+1=2an+2×3n+1,,即
| an+1+3n+2 |
| an+3n+1 |
所以数列{an+3n+1}是首项为10,公比为2的等比数列,
则an+3n+1=10×2n-1,即an=5×2n-3n+1,
所以Sn=5×
| 2(1-2n) |
| 1-2 |
| 32(1-3n) |
| 1-3 |
| 3n+2+11 |
| 2 |
故答案为5×2n+1-
| 3n+2+11 |
| 2 |
点评:本题主要考查等比数列的定义、通项公式、前n项和公式,同时考查函数的单调性等.
练习册系列答案
相关题目