题目内容

在△ABC中,角A、B、C的所对边的长分别为a、b、c,且a=
5
,b=3,sinC=2sinA.
(Ⅰ)求c的值;
(Ⅱ)求 sin(2A-
π
3
)
的值.
(Ⅰ)∵a=
5
,sinC=2sinA,
∴根据正弦定理
c
sinC
=
a
sinA
得:c=
sinC
sinA
a=2a=2
5

(Ⅱ)∵a=
5
,b=3,c=2
5

∴由余弦定理得:cosA=
c2+b2-a2
2bc
=
2
5
5

又A为三角形的内角,
∴sinA=
1-cos2A
=
5
5

∴sin2A=2sinAcosA=
4
5
,cos2A=cos2A-sin2A=
3
5

则sin(2A-
π
3
)=sin2Acos
π
3
-cos2Asin
π
3
=
4-3
3
10
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网