搜索
题目内容
已知函数f(x)=Asin(ωx+φ)+B的一部分图象如图所示,其中 A>0,ω>0,|ω|<
,求函数f(x)的解析式。
试题答案
相关练习册答案
解:由图象得A=2,B=2,T=
,
,
又由五点作图,得
,
∴
,
综上,可得
+2。
练习册系列答案
世超金典假期乐园系列答案
名师点拨组合阅读训练系列答案
名校1号快乐暑假学年总复习系列答案
新暑假生活系列答案
蓝博士暑假生活甘肃少年儿童出版社系列答案
期末1卷素质教育评估卷系列答案
假期生活北京教育出版社系列答案
暑假作业武汉出版社系列答案
暑假学习与生活山东友谊出版社系列答案
成长记暑假总动员云南科技出版社系列答案
相关题目
已知函数f(x)=
a-
x
2
x
+lnx (a∈R , x∈[
1
2
, 2])
(1)当
a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x
2
,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.
(2009•海淀区二模)已知函数f(x)=a-2
x
的图象过原点,则不等式
f(x)>
3
4
的解集为
(-∞,-2)
(-∞,-2)
.
已知函数f(x)=a
|x|
的图象经过点(1,3),解不等式
f(
2
x
)>3
.
已知函数f(x)=a•2
x
+b•3
x
,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.
已知函数f(x)=a-2
|x|
+1(a≠0),定义函数F(x)=
f(x) , x>0
-f(x) , x<0
给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案