题目内容

已知中心在原点O,焦点在x轴上,离心率为的椭圆过点().

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设不过原点O的直线l与该椭圆交于PQ两点,满足直线OPPQOQ的斜率依次成等比数列,求△OPQ面积的取值范围.

 


本题主要考查椭圆的标准方程的求解,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。满分15分。

(Ⅰ) 解:由题意可设椭圆方程为  (ab>0),

    故

所以,椭圆方程为 .     ……………………………5分

(Ⅱ) 解:由题意可知,直线l的斜率存在且不为0,

故可设直线l的方程为 ykxm (m≠0),P(x1y1),Q(x2y2),

消去y

(1+4k2)x2+8kmx+4(m2-1)=0,

Δ=64 k2b2-16(1+4k2b2)(b2-1)=16(4k2m2+1)>0,

y1 y2=(kx1m)(kx2m)=k2x1x2km(x1x2)+m2.……………………8分

因为直线OPPQOQ的斜率依次成等比数列,

所以 k2

m2=0,又m≠0,

所以 k2,即 k……………………11分

由于直线OPOQ的斜率存在,且Δ>0,得

0<m2<2 且 m2≠1.

d为点O到直线l的距离,

SOPQd | PQ |=| x1x2 | | m |=

所以 SOPQ的取值范围为 (0,1).     ……………………………15分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网