题目内容
已知数列{an}前n项的和为Sn,且满足Sn=1-nan(n=1,2,3,…).(Ⅰ)求a1、a2的值;
(Ⅱ)求an.
分析:(Ⅰ)由Sn=1-nan(n=1,2,3,…).分别令n=1和n=2,可求出a1和a2的值.
(Ⅱ)由Sn=1-nan,知Sn-1=1-(n-1)an-1an=(n-1)an-1-nan,由此可求出an=
an-1an=
a1
=
.
(Ⅱ)由Sn=1-nan,知Sn-1=1-(n-1)an-1an=(n-1)an-1-nan,由此可求出an=
| n-1 |
| n+1 |
| 2 |
| n(n+1) |
=
| 1 |
| n(n+1) |
解答:解:(Ⅰ)当n=1时,∵a1=1-a1.∴a1=
.
当n=2时,∵a1+a2=1-2a2,∴a2=
(Ⅱ)∵Sn=1-nan,
∴当n≥2时Sn-1=1-(n-1)an-1an=(n-1)an-1-nan
∴an=
an-1an=
a1
=
当n=1时a1=
符合上式,
∴an=
(n=1,2,3,)
| 1 |
| 2 |
当n=2时,∵a1+a2=1-2a2,∴a2=
| 1 |
| 6 |
(Ⅱ)∵Sn=1-nan,
∴当n≥2时Sn-1=1-(n-1)an-1an=(n-1)an-1-nan
∴an=
| n-1 |
| n+1 |
| 2 |
| n(n+1) |
=
| 1 |
| n(n+1) |
当n=1时a1=
| 1 |
| 2 |
∴an=
| 1 |
| n(n+1) |
点评:本题考查数列的性质和综合应用,解题要认真审题,注意公式的灵活运用.
练习册系列答案
相关题目