搜索
题目内容
已知函数
若函数g(x)=f(x)﹣m有3个零点,则实数m的取值范围是( ).
试题答案
相关练习册答案
(0,1)
练习册系列答案
优等生数学系列答案
小学课堂作业系列答案
口算练习册系列答案
金博士一点全通系列答案
课时作业本吉林人民出版社系列答案
天天向上中考零距离教材新解系列答案
阳光互动绿色成长空间系列答案
星火英语Spark巅峰训练系列答案
名师点津随堂小测系列答案
好帮手阅读成长系列答案
相关题目
已知函数f(x)=ln(e
x
+k)(k为常数)是实数集R上的奇函数
(1)求k的值
(2)若函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数,且g(x)≤t
2
+λt+1在x∈[-1,1]上恒成立,求t的取值范围
(3)讨论关于x的方程
lnx
f(x)
=
x
2
-2ex+m
的根的个数.
已知函数f(x)=x
2
+2(1-a)x+2(1-a)ln(x-1)x∈(1,+∞).
(1)x=
3
2
是函数的一个极值点,求a的值;
(2)求函数f(x)的单调区间;
(3)当a=2时,函数g(x)=-x
2
-b,(b>0),若对任意m
1
,m
2
∈[
1
e
+1,e+1],
.
g(
m
2
)-f(
m
1
)
.
<2
g
2
+2g
都成立,求b的取值范围.
(2010•福建模拟)已知函数f(x)=(ax
2
+bx+c)e
x
在x=1处取得极小值,其图象过点A(0,1),且在点处切线的斜率为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)的定义域D,若存在区间[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],则称区间[m,n]为函数g(x)的“保值区间”.
(ⅰ)证明:当x>1时,函数f(x)不存在“保值区间”;
(ⅱ)函数f(x)是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不存在,说明理由.
已知函数f(x)=2lnx,g(x)=
1
2
ax
2
+3x.
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程
1
2
f(x
2
+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x
2
-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.
已知函数f(x)的图象在[a,b]上连续不断曲线,定义:f
1
(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f
2
(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函数f(t)在D上的最小值,max{f(t)|x∈D}表示函数f(t)在D上的最大值.若存在最小正整数k,使得f
2
(x)-f
1
(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)已知函数f(x)=2sinx(0
≤x≤
n
2
),试写出f
1
(x),f
2
(x)的表达式,并判断f(x)是否为[0,
n
2
]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;
(2)已知b>0,函数g(x)=-x
3
+3x
2
是[0,b]上的2阶收缩函数,求b的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案