题目内容
已知函数f(x)=ln(x-1)-k(x-1)+1
(1)求函数f(x)的极值点.
(2)若f(x)≤0恒成立,试确定实数k的取值范围.
(3)证明:
+
+
+…+
<
(n∈N,n>1).
(1)求函数f(x)的极值点.
(2)若f(x)≤0恒成立,试确定实数k的取值范围.
(3)证明:
| ln2 |
| 3 |
| ln3 |
| 8 |
| ln4 |
| 15 |
| lnn |
| n2-1 |
| (n+4)(n-1) |
| 6 |
(1)f(x)的定义域为(1,+∞),f′(x)=
-k.
当k≤0时,∵x-1>0,∴f′(x)>0,则f(x) 在(1,+∞)上是增函数.
f(x)在(1,+∞)上无极值点.
当 k>0时,令f′(x)=0,则 x=1+
. 所以当x∈(1,1+
)时,f′(x)=
-k>
-k=0,
∴f(x)在∈(1,1+
)上是增函数,
当x∈(1+
,+∞) 时,f′(x)=
-k<
-k=0,∴f(x)在∈(1+
,+∞) 上是减函数.
∴x=1+
时,f(x)取得极大值.
综上可知,当 k≤0时,f(x)无极值点; 当k>0时,f(x)有唯一极值点 x=1+
.
(2)由1)可知,当k≤0时,f(2)=1-k>0,f(x)≤0 不成立.
故只需考虑k>0.
由1)知,f(x)max=f(1+
)=-lnk,
若f(x)≤0 恒成立,只需 f(x)max=f(1+
)=-lnk≤0 即可,
化简得:k≥1.所以,k 的取值范围是[1,+∞).
3)由2)知,当k=1时,lnx<x-1,x>1.
∴lnn3<n3-1=(n-1)(n2+n+1)<(n-1)(n+1)2.
∴
<
,n∈N,n>1.
∴
+
+
+…+
<
(3+4+5+…+n+1)=
×
(n-1)
=
,n∈N,n>1.
| 1 |
| x-1 |
当k≤0时,∵x-1>0,∴f′(x)>0,则f(x) 在(1,+∞)上是增函数.
f(x)在(1,+∞)上无极值点.
当 k>0时,令f′(x)=0,则 x=1+
| 1 |
| k |
| 1 |
| k |
| 1 |
| x-1 |
| 1 | ||
1+
|
∴f(x)在∈(1,1+
| 1 |
| k |
当x∈(1+
| 1 |
| k |
| 1 |
| x-1 |
| 1 | ||
1+
|
| 1 |
| k |
∴x=1+
| 1 |
| k |
综上可知,当 k≤0时,f(x)无极值点; 当k>0时,f(x)有唯一极值点 x=1+
| 1 |
| k |
(2)由1)可知,当k≤0时,f(2)=1-k>0,f(x)≤0 不成立.
故只需考虑k>0.
由1)知,f(x)max=f(1+
| 1 |
| k |
若f(x)≤0 恒成立,只需 f(x)max=f(1+
| 1 |
| k |
化简得:k≥1.所以,k 的取值范围是[1,+∞).
3)由2)知,当k=1时,lnx<x-1,x>1.
∴lnn3<n3-1=(n-1)(n2+n+1)<(n-1)(n+1)2.
∴
| lnn |
| n2-1 |
| n+1 |
| 3 |
∴
| ln2 |
| 3 |
| ln3 |
| 8 |
| ln4 |
| 15 |
| lnn |
| n2-1 |
| 1 |
| 3 |
| 1 |
| 3 |
| (3+n+1) |
| 2 |
=
| (n+4)(n-1) |
| 6 |
练习册系列答案
相关题目