题目内容
(2012•闵行区一模)若f(n)=1+
+
+…+
(n∈N*),则对于k∈N*,f(k+1)=f(k)+
+
+
+
+
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 3k+2 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 3k+2 |
分析:利用所给等式,确定f(k+1)与f(k)中的项,即可得到结论.
解答:解:∵f(n)=1+
+
+…+
∴f(k+1)=1+
+
+…+
+
+
+
∵f(k)=1+
+
+…+
∴f(k+1)=f(k)+
+
+
故答案为:
+
+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
∴f(k+1)=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3k-1 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 3k+2 |
∵f(k)=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3k-1 |
∴f(k+1)=f(k)+
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 3k+2 |
故答案为:
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 3k+2 |
点评:本题考查数学归纳法,解题的关键是明确等式的意义,从而确定变化的项.
练习册系列答案
相关题目