题目内容

已知函数f(x)=ax+
x-2
x+1
(a>1),求证方程f(x)=0没有负数根.
假设x0是方程f(x)=0的负数根,且x0≠-1,则ax0+
x0-2
x0+1
=0

ax0=
2-x0
x0+1
=
3-(x0+1)
x0+1
=
3
x0+1
-1
,①
当-1<x0<0时,0<x0+1<1,∴
3
x0+1
>3

3
x0+1
-1>2
,而由a>1知ax0<1.∴①式不成立;
当x0<-1时,x0+1<0,∴
3
x0+1
<0
,∴
3
x0+1
-1<-1
,而ax0>0
∴①式不成立.综上所述,方程f(x)=0没有负数根.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网