题目内容
【题目】(题文)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为
A.
B.
C.
D. ![]()
【答案】A
【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.
详解:根据相互平行的直线与平面所成的角是相等的,
所以在正方体
中,
平面
与线
所成的角是相等的,
所以平面
与正方体的每条棱所在的直线所成角都是相等的,
同理平面
也满足与正方体的每条棱所在的直线所成角都是相等,
要求截面面积最大,则截面的位置为夹在两个面
与
中间的,
且过棱的中点的正六边形,且边长为
,
所以其面积为
,故选A.
【题目】美国一贯推行强权政治,2018年3月22日,美国总统特朗普在白宫签署了对中国输美产品征收关税的总统备忘录,限制中国商品进入美国市场。中国某企业计划打入美国市场,决定从A、B两种产品中只选一种进行投资生产,已知投入生产这两种产品的有关数据如下表:(单位:万元)
年固定成本 | 每件产品成本 | 每件产品销售价 | 每年最多可生产件数 | |
A产品 | 40 | m | 15 | 200 |
B产品 | 60 | 10 | 22 | 150 |
其中固定成本与年生产的件数无关,m是待定的常数,其值由生产A产品的原材料决定,预计
,另外,年销售
件B产品时需交0.05
万元的附件关税,假设生产出来的产品都能在当年销售出去.
(1)求该厂分别投资生产A、B两种产品的年利润
与生产相应产品的件数
之间的函数关系,并求出其定义域;
(2)如何投资才可获得最大年利润?请设计出投资方案.
【题目】某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了
组数据作为研究对象,如下图所示(
(吨)为该商品进货量,
(天)为销售天数):
| 2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 |
| 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根据上表数据在下列网格中绘制散点图;
![]()
(Ⅱ)根据上表提供的数据,求出
关于
的线性回归方程
;
(Ⅲ)在该商品进货量
(吨)不超过6(吨)的前提下任取两个值,求该商品进货量
(吨)恰有一个值不超过3(吨)的概率.
【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
| 支持 | 保留 | 不支持 |
|
|
|
|
|
|
|
|
(1)在所有参与调查的人中,用分层抽样的方法抽取
个人,已知从持“不支持”态度的人中抽取了
人,求
的值;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取
人看成一个总体,从这
人中任意选取
人,求至少有一人年龄在
岁以下的概率.
(3)在接受调查的人中,有
人给这项活动打出的分数如下:
,
,
,
,
,
,
,
,
,
,把这
个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过
概率.