题目内容
已知函数f(x)=sin2x+cosxcos(
-x).
(Ⅰ)求f (
)的值;
(Ⅱ)求函数f(x)的最小正周期及值域.
| π |
| 2 |
(Ⅰ)求f (
| π |
| 3 |
(Ⅱ)求函数f(x)的最小正周期及值域.
(I)由已知,得f(
π)=sin2
π+cos
πcos(
π-
π)…(2分)
=
+
×
=
…(5分)
(II)f(x)=sin2x+sinxcosx
=
+
=
sin2x-
cos2x+
=
sin(2x-
)+
函数f(x)的最小正周期T=π…(11分)
值域为[
,
]…(13分)
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
=
| 3 |
| 4 |
| 1 |
| 2 |
| ||
| 2 |
=
3+
| ||
| 4 |
(II)f(x)=sin2x+sinxcosx
=
| 1-cos2x |
| 2 |
| sin2x |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
函数f(x)的最小正周期T=π…(11分)
值域为[
1-
| ||
| 2 |
1+
| ||
| 2 |
练习册系列答案
相关题目