题目内容
设函数f(x)=
,作数列{bn}:b1=1,bn=f(
)(n≥2),
求和:Wn=b1b2-b2b3+b3b4-…+(-1)n-1•bnbn+1.
| 2x+3 |
| 3x |
| 1 |
| bn-1 |
求和:Wn=b1b2-b2b3+b3b4-…+(-1)n-1•bnbn+1.
∵f(x)=
=
+
,bn=f(
),n≥2,
∴bn=
+bn-1,
∵b1=1,∴{bn}是首项为1,公差为
的等差数列,
∴bn=
,
∴bnbn+1=
(4n2+8n+3),
①当n为偶数时:
∵b2=
,bn=
,
∴Wn=b1b2-b2b3+b3b4-b4b5+…+bn-1bn-bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)
=-2×
(b2+b4+…+bn)
=-
×[
(
+
)]
=-
(2n2+6n);
②当n为奇数时:
∵b2=
,bn-1=
,
∴Wn=b1b2-b2b3+b3b4-b4b5+…+bn-2bn-1-bn-1bn+bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn-1(bn-2-bn)+bnbn+1
=-2×
(b2+b4+…+bn-1)+bnbn+1
=-
×[
(
+
)]+
(4n2+8n+3)
=
(2n2+6n+7).
故Wn=
.
| 2x+3 |
| 3x |
| 2 |
| 3 |
| 1 |
| x |
| 1 |
| bn-1 |
∴bn=
| 2 |
| 3 |
∵b1=1,∴{bn}是首项为1,公差为
| 2 |
| 3 |
∴bn=
| 2n+1 |
| 3 |
∴bnbn+1=
| 1 |
| 9 |
①当n为偶数时:
∵b2=
| 5 |
| 3 |
| 2n+1 |
| 3 |
∴Wn=b1b2-b2b3+b3b4-b4b5+…+bn-1bn-bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)
=-2×
| 2 |
| 3 |
=-
| 4 |
| 3 |
| n |
| 4 |
| 5 |
| 3 |
| 2n+1 |
| 3 |
=-
| 1 |
| 9 |
②当n为奇数时:
∵b2=
| 5 |
| 3 |
| 2n-1 |
| 3 |
∴Wn=b1b2-b2b3+b3b4-b4b5+…+bn-2bn-1-bn-1bn+bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn-1(bn-2-bn)+bnbn+1
=-2×
| 2 |
| 3 |
=-
| 4 |
| 3 |
| n-1 |
| 4 |
| 5 |
| 3 |
| 2n-1 |
| 3 |
| 1 |
| 9 |
=
| 1 |
| 9 |
故Wn=
|
练习册系列答案
相关题目