题目内容
12、设A=1+2x4,B=2x3+x2,x∈R,则A,B的大小关系是
A≥B
.分析:作差比较大小.
解答:解:∵A-B=1+2x4-2x3-x2=2x3(x-1)-(x2-1)
=(x-1)(2x3-x-1)
=(x-1)(x3-x+x3-1)
=(x-1)[x(x2-1)+(x-1)(x2+x+1)]
=(x-1)2(2x2+2x+1)
∵(x-1)2≥0,2x2+2x+1>0,
∴A-B≥0,即A≥B.
答案:A≥B
=(x-1)(2x3-x-1)
=(x-1)(x3-x+x3-1)
=(x-1)[x(x2-1)+(x-1)(x2+x+1)]
=(x-1)2(2x2+2x+1)
∵(x-1)2≥0,2x2+2x+1>0,
∴A-B≥0,即A≥B.
答案:A≥B
点评:作差是比较两个代数式大小的常用方法.
练习册系列答案
相关题目