题目内容
已知数列{an}的前n项和为Sn,且满足a1=
,(4n-1)an=3×4n-1Sn,n∈N*,设bn=
,Tn为数列{bn}的前n项和.
(I)求Sn;
(II)求证:Tn<
.
| 4 |
| 3 |
| n |
| 3an |
(I)求Sn;
(II)求证:Tn<
| 4 |
| 9 |
分析:(I)当n≥2时,利用递推公式an=Sn-Sn-1.可得{
}是公比为1的等比数列,从而可求
(II)由(1)可得,Sn=
(4n-1)代入3•4n-1Sn=(4n-1)an,可求an,bn,结合数列的特点考虑利用错位相减求Tn可证
| Sn |
| 4n-1 |
(II)由(1)可得,Sn=
| 4 |
| 9 |
解答:解:(I)当n≥2时,an=Sn-Sn-1.
∴当n≥2时,3•4n-1Sn=(4n-1)(Sn-Sn-1)⇒(4n-1-1)Sn=(4n-1-1)Sn-1⇒
=
,…(2分)
∴{
}是公比为1的等比数列,
∴
=
=
⇒Sn=
(4n-1)(n∈N*).…(5分)
(II)将Sn=
(4n-1)代入3•4n-1Sn=(4n-1)an,得
an=
⇒bn=
=
.…(7分)
Tn=
+
+
+…+
,
Tn=
+
+
+…+
.⇒
Tn=
+
+
+…+
-
=
-
=
-
-
⇒Tn=
-
.…(10分)
Tn=
-
<
.…(12分)
∴当n≥2时,3•4n-1Sn=(4n-1)(Sn-Sn-1)⇒(4n-1-1)Sn=(4n-1-1)Sn-1⇒
| Sn |
| 4n-1 |
| Sn-1 |
| 4n-1-1 |
∴{
| Sn |
| 4n-1 |
∴
| Sn |
| 4n-1 |
| S1 |
| 3 |
| 4 |
| 9 |
| 4 |
| 9 |
(II)将Sn=
| 4 |
| 9 |
an=
| 4n |
| 3 |
| n |
| 3an |
| n |
| 4n |
Tn=
| 1 |
| 4 |
| 2 |
| 42 |
| 3 |
| 43 |
| n |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 2 |
| 43 |
| 3 |
| 44 |
| n |
| 4n-1 |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 43 |
| 1 |
| 4n |
| n |
| 4n+1 |
| ||||||
1-
|
| n |
| 4n+1 |
| 1 |
| 3 |
| 1 |
| 3•4n |
| n |
| 4n+1 |
⇒Tn=
| 4 |
| 9 |
| 3n+4 |
| 9•4n |
Tn=
| 4 |
| 9 |
| 3n+4 |
| 9•4n |
| 4 |
| 9 |
点评:本题主要考查了利用数列的递推公式,an=Sn-Sn-1.求解数列的通项公式,数列求和的错位相减求和的方法的应用,要掌握该求和方法.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |