题目内容
数列{an}的前n项和为Sn,且满足a1=1,Sn2=an(Sn-
)(n≥2)
(1)证明数列{
}是等差数列,并求an;
(2)设bn=
,求{bn}的前n项和Tn;若对任意的n∈N*都有Tn<log
m,求m的取值范围.
| 1 |
| 2 |
(1)证明数列{
| 1 |
| Sn |
(2)设bn=
| Sn |
| 2n+1 |
| 1 |
| 2 |
分析:(1)
=(Sn-Sn-1)(Sn-
),整理该递推式,由等差数列的定义可作出判断,根据等差数列通项公式可得
,从而可求Sn,根据an=
可求an;
(2)由(1)可得bn,利用裂项相消法可求出Tn,进而可求其最大值,问题等价于最大值小于log
m,解出即可;
| S | 2 n |
| 1 |
| 2 |
| 1 |
| Sn |
|
(2)由(1)可得bn,利用裂项相消法可求出Tn,进而可求其最大值,问题等价于最大值小于log
| 1 |
| 2 |
解答:(1)证明:
=(Sn-Sn-1)(Sn-
),整理可得
-
=2(n≥2),
∴{
}是等差数列,首项为1,公差为2,
则
=2n-1,所以Sn=
,
当n≥2时,an=Sn-Sn-1=
-
=-
,
所以an=
;
(2)解:bn=
=
=
(
-
),
所以Tn=
(1-
)+
(
-
)+…+
(
-
)
=
(1-
)<
,
对任意的n∈N*都有Tn<log
m,只须使log
m≥
,
解得0<m≤
.
| S | 2 n |
| 1 |
| 2 |
| 1 |
| Sn |
| 1 |
| Sn-1 |
∴{
| 1 |
| Sn |
则
| 1 |
| Sn |
| 1 |
| 2n-1 |
当n≥2时,an=Sn-Sn-1=
| 1 |
| 2n-1 |
| 1 |
| 2n-3 |
| 2 |
| (2n-1)(2n-3) |
所以an=
|
(2)解:bn=
| Sn |
| 2n+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
所以Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
对任意的n∈N*都有Tn<log
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解得0<m≤
| ||
| 2 |
点评:本题主要考查由递推式求数列通项公式及数列求和,考查转化思想,裂项相消法对数列求和是高考考查重点内容.
练习册系列答案
相关题目